Thursday, August 03, 2023

Driving scenarios at the limit – Data based generation of Edge cases for automated driving

Topic and Goal of the Thesis

Vehicles are driving increasingly automated. But how can we prove that these vehicles are safe?
This is a central question in research on automated vehicles. A promising approach is scenario-based testing. Particularly exciting are edge cases that challenge the system but are realistic. However, such edge cases can hardly be found in data.

In this thesis, a method for the synthetic generation of such edge cases on the basis of real data shall be developed. The goal is to determine the general boundary of real-world scenarios based on real data. Rule-based approaches as well as machine learning approaches can be considered.

Working Points

  • Literature research on the topics of scenario generation and parameter extrapolation
  • Development of a methodology to generate realistic Edge-Cases for dynamic road users
  • Implementation of the method
  • Validation of the methodology based on real intersection data


  • Good English or German language skills
  • Reliability, commitment and enjoyment of working independently as well as methodically
  • Basic knowledge in data science
  • Experience with python

Note: Please attach brief resume and grade summary.


Christoph Glasmacher M. Sc.
+49 241 80 25611

Type of work



Earliest possible date

Prior knowledge



Deutsch, Englisch

Research area

Fahrzeugintelligenz & Automatisiertes Fahren


Institute for Automotive Engineering
RWTH Aachen University
Steinbachstraße 7
52074 Aachen · Germany
+49 241 80 25600

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.